[LeetCode-Medium] LRU Cache
Design a data structure that follows the constraints of a Least Recently Used (LRU) cache.
Implement the LRUCache
class:
LRUCache(int capacity)
Initialize the LRU cache with positive sizecapacity
.int get(int key)
Return the value of thekey
if the key exists, otherwise return-1
.void put(int key, int value)
Update the value of thekey
if thekey
exists. Otherwise, add thekey-value
pair to the cache. If the number of keys exceeds thecapacity
from this operation, evict the least recently used key.
Follow up:
Could you do get
and put
in O(1)
time complexity?
Example 1:
Input
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
Output
[null, null, null, 1, null, -1, null, -1, 3, 4]
Explanation
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // cache is {1=1}
lRUCache.put(2, 2); // cache is {1=1, 2=2}
lRUCache.get(1); // return 1
lRUCache.put(3, 3); // LRU key was 2, evicts key 2, cache is {1=1, 3=3}
lRUCache.get(2); // returns -1 (not found)
lRUCache.put(4, 4); // LRU key was 1, evicts key 1, cache is {4=4, 3=3}
lRUCache.get(1); // return -1 (not found)
lRUCache.get(3); // return 3
lRUCache.get(4); // return 4
Constraints:
1 <= capacity <= 3000
0 <= key <= 3000
0 <= value <= 104
- At most
3 * 104
calls will be made toget
andput
.
這個題目要我們實踐一個 LRU Cache 的算法
常見的快取演算法有
Solution - Javascript
var LRUCache = function(capacity) {
this.capacity = capacity;
this.cache = new Map();
};
/**
* @param {number} key
* @return {number}
*/
LRUCache.prototype.get = function(key) {
if (!this.cache.has(key)) return -1;
const value = this.cache.get(key);
this.cache.delete(key);
this.cache.set(key, value);
return value;
};
/**
* @param {number} key
* @param {number} value
* @return {void}
*/
LRUCache.prototype.put = function(key, value) {
this.cache.delete(key);
this.cache.set(key, value);
if (this.cache.size > this.capacity)
this.cache.delete(this.cache.keys().next().value);
};